Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cardiovasc Res ; 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1901161

ABSTRACT

AIMS: Thrombotic complications and vasculopathy have been extensively associated with severe COVID-19 infection, however the mechanisms inducing endotheliitis and the disruption of endothelial integrity in the microcirculation are poorly understood. We hypothesized that within the vessel wall, pericytes preferentially take up viral particles and mediate the subsequent loss of vascular integrity. METHODS AND RESULTS: Immunofluorescence of post-mortem patient sections were used to assess pathophysiological aspects of COVID19 infection. The effects of COVID-19 on the microvasculature were assessed using a vascular organoid model exposed to live viral particles or recombinant viral antigens. We find increased expression of the viral entry receptor ACE2 on pericytes when compared to vascular endothelium, and a reduction in the expression of the junctional protein CD144, as well as increased cell death, upon treatment with both live virus and/or viral antigens. We observe a dysregulation of genes implicated in vascular permeability including NOTCH3, angiopoietin-2 and TEK. Activation of vascular organoids with IL-1ß did not have an additive effect on vascular permeability. Spike antigen was detected in some patients' lung pericytes, which was associated with a decrease in CD144 expression and increased platelet recruitment and VWF deposition in the capillaries of these patients, with thrombi in large vessels rich in VWF and fibrin. CONCLUSIONS: Together our data indicates that direct viral exposure to the microvasculature modelled by organoid infection and viral antigen treatment result in pericyte infection, detachment, damage and cell death, disrupting pericyte-endothelial cell crosstalk and increasing microvascular endothelial permeability, which can promote thrombotic and bleeding complications in the microcirculation. TRANSLATIONAL PERSPECTIVE: Endotheliitis is a serious complication of severe COVID-19 patients which remains poorly understood. We identify a pericyte mediated mechanism by which the vasculature becomes compromised, contributing to thrombotic complications, highlighting important avenues for the development of therapies.

2.
iScience ; 24(11): 103215, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1446746

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Deep immune profiling showed acute MIS-C patients had highly activated neutrophils, classical monocytes and memory CD8+ T-cells, with increased frequencies of B-cell plasmablasts and double-negative B-cells. Post treatment samples from the same patients, taken during symptom resolution, identified recovery-associated immune features including increased monocyte CD163 levels, emergence of a new population of immature neutrophils and, in some patients, transiently increased plasma arginase. Plasma profiling identified multiple features shared by MIS-C, Kawasaki Disease and COVID-19 and that therapeutic inhibition of IL-6 may be preferable to IL-1 or TNF-α. We identified several potential mechanisms of action for IVIG, the most commonly used drug to treat MIS-C. Finally, we showed systemic complement activation with high plasma C5b-9 levels is common in MIS-C suggesting complement inhibitors could be used to treat the disease.

SELECTION OF CITATIONS
SEARCH DETAIL